Forest Health Threats 2023

NICOLE KELEHER

D E P T . O F
C O N S E R V A T I O N A N D
R E C R E A T I O N

DCR Forest Health Program

Early detection

Forest disturbance mapping

Long term monitoring

Treatment programs

Biocontrol release programs

Forest Health Story Map

https://arcg.is/j8TiD

2023

FEMC Regional Forest Health Atlas

https://www.uvm.edu/femc/forest-health-atlas

Beech Leaf Disease

Litylenchus crenatae

Foliar Nematode

Gary Bauchan, USDA ARS

BLD Symptoms

BLD Progression

As the disease progresses, more of the canopy will be exhibit leaf symptoms. Overtime, leaves will have more dark bands and severely diseased leaves will emerge shriveled and curled. Eventually, impacted buds will be aborted and the tree will have canopy dieback.

Beech Bark Disease Complex

- Beech scale (*Cryptococcus fagisuga*) attack
- Fungal introduction, Nectria spp.
- Canker development
- Tree decline and mortality

Beech Bark Disease

Spongy Moth

Lymantria dispar

Recent Name Change

Formerly known as gypsy moth

Historic Massachusetts LDD Defoliation

Spongy Moth Recent Impact

	LDD Defoliation	Oak Mortality
2015	38,175	545
2016	349,866	6,536
2017	923,186	122
2018	159,705	23,602
2019	9,955	57,912
2020	140	-
2021	11,455	-
2022	30,895	

2022 Defoliation Impact

2023 Defoliation Risk

Spongy Moth Egg Mass Survey Results 2022

Department of Conservation and Recreation Forest Health Program

2023 Caterpillar Emergence

Hemlock Woolly Adelgid

Adelges tsugae

HWA in Massachusetts

Impact of Winter Temperatures

Biocontrol Program

Laricobius nigrinus

Sasajiscymnus tsugae

MA Biocontrol Release Sites 1999-2022

New Species Released 2022

LEUCOTARAXIS SPP.

LARICOBIUS OSAKENSIS

Leucotaraxis spp.

Elongate hemlock scale

Fiorinia externa

High Density Infestations

Hemlock looper

Lambdina fiscellaria

Native defoliator species common in New England

Periodic outbreaks in our forests

Red pine scale

Matsucoccus resinosae

Spreading Infestations

Red pine management

Eastern White Pine Decline

White pine needle disease

Needlecast disease complex

Cause by multiple fungal pathogens including:

- Lecanosticta acicola
- Septorioides strobi
- Bifusella linearis
- Hendersonia pinicola
- Lophodermium sp.

Needlecast Symptoms

Caliciopsis pinea

Canker Formation

Pine Decline and Mortality

Stress from fungal pathogens weakens trees and leaves them vulnerable to other insects and diseases. While WPND does not directly kill pines, we have seen decline and mortality caused by secondary invaders. Drought and other impacts of climate change can further expedite this process.

White Pine Blister Rust

Cause by the introduced pathogen *Cronartium* ribicola WPBR infects 5 needle pines. Requires an alternate, *Ribes sp.*Eradication efforts in the 20th century limited the impact of this disease

Maine Agricultural and Forest Experiment Station

Miscellaneous Publication 764 June 2019 • ISSN: 1070-1508

Field Manual for Managing Eastern White Pine Health in New England

William H. Livingston, Isabel Munck, Kyle Lombard, Jennifer Weimer, Aaron Bergdahl, Laura S. Kenefic, Barbara Schultz, Robert S. Seymour

College of Natural Sciences, Forestry, and Agriculture

Figure 1. Needle Discoloration

rigure 1. Needle Discoloration			
White Pine Weevil	White Pine Blister Rust	Pine Bast Scale/Caliciopsis Canker	White Pine Needle Damage
	В	C	E
Terminal shoot and first whorl curl and turn yellow-red	Orange-red flagging	Red flagging (C); thin foliage density due to poor health (D)	Yellowing of second-year needles throughout the tree in June and early July

Emerald ash borer

Agrilus planipennis

Current Detected Infestations

EAB Damage

Tree Decline and Mortality

Pesticide Treatment Options

 $http://www.emeraldashborer.info/documents/Multistate_EAB_Insecticide_Fact_Sheet.pdf$

Biocontrol Release Program

Three parasitic wasp species released in MA

- Spathius galinae
- Tetrastichus planipennisi
- Oobius agrili

Quabbin Reservoir

Questions

Nicole Keleher

Nicole.Keleher@mass.gov

Website:

https://www.mass.gov/service -details/forest-health-program

Story Map:

https://arcg.is/j8TiD

