Dear Customer,

I am pleased to share with you the results of our annual water quality testing. MWRA takes hundreds of thousands of tests each year, and for 2012 we again met every federal and state drinking water standard. System-wide, we have been below the Lead Action Level for the past nine years. Please read your community’s letter on page 4 for more information on your local water system.

MWRA continues to work to make the water system even better. Construction of a new covered storage tank in Stoneham and improved ultraviolet disinfection facilities at the Carroll Treatment Plant in Marlborough are currently underway. And with the completion this spring of the rehabilitation of the Hultman Aqueduct, we now have full redundancy from the treatment plant into the distribution system for the first time. This is a vast improvement to the water system and will ensure the delivery of water in the event of a major break, like the one that occurred in May 2010.

This report describes where your water comes from, how it is treated and delivered, and the steps we take to ensure its quality. Please take a moment to read it so that you can share our confidence in your drinking water.

In 2012 MWRA again received the Drinking Water Excellence Award from the Massachusetts Department of Environmental Protection. Some of the best drinking water in the country is delivered straight to your home. When you have a choice, we hope you drink locally!

Sincerely,

Frederick A. Laskey
Executive Director

Your water also comes from local water supplies. Please see page 4 for more information.

The Quabbin and Wachusett watersheds are naturally protected with over 85% of the watersheds covered in forest and wetlands. To ensure safety, the streams and reservoirs are tested and monitored daily by the Department of Conservation and Recreation (DCR).

Rain and snow falling on the watersheds - protected land around the reservoirs - turn into streams that flow to the reservoirs. This water comes in contact with soil, rock, plants, and other material as it follows its natural path to the reservoirs. While this process helps to clean the water, it can also dissolve and carry very small amounts of material into the reservoir. Minerals from soil and rock do not typically cause problems in the water. But, water can also transport contaminants from human and animal activity. These can include bacteria, viruses, and fertilizers - some of which can cause illness. The test data in this report show that these contaminants are not a problem in your reservoirs’ watersheds.

The Department of Environmental Protection (DEP) has prepared a Source Water Assessment Program report for the Quabbin and Wachusett Reservoirs. The DEP report commends DCR and MWRA on the existing source protection plans, and states that our “watershed protection programs are very successful and greatly reduce the actual risk of contamination.” MWRA follows the report recommendations to maintain the pristine watershed areas. Your water also comes from local water supplies.
Your Water System

From the Reservoir to Your Home
Your tap water is treated at the John J. Carroll Water Treatment Plant in Marlborough. The first treatment step is disinfection of reservoir water. MWRA’s licensed treatment operators carefully add measured doses of ozone gas bubbles — produced from pure oxygen — to the water to kill any pathogens (germs) that may be present in the water. Fluoride is then added to promote dental health. Next, the water chemistry is adjusted to reduce corrosion of lead and copper from home plumbing. Last, we add mono-chloramine, a mild and long-lasting disinfectant combining chlorine and ammonia, which protects the water while it is in the local pipelines. Your local water supply may have different treatment. Please see page 4 for more information.

Improvements to Water Supply
Since 1985, MWRA and our community partners have made improvements to the entire water system—from the watersheds to the local pipelines. In 2012, MWRA continued construction of a new covered water storage tank in Stoneham and the addition of ultraviolet (UV) disinfection facilities at the treatment plant in Marlborough. Of note this year is the completion of the rehabilitation of the Hullman Aqueduct, ensuring full redundancy from the treatment plant into the distribution system.

Testing Your Water — Every Step of the Way
Test results show few contaminants are found in the reservoir water. The few that are found are in very small amounts, well below EPA’s standards. Turbidity (or cloudiness of the water) is one measure of overall water quality. There are two standards for turbidity: all water must be below 5 NTU (Nephelometric Turbidity Units), and only can be above 1 NTU if it does not interfere with effective disinfection. MWRA met both of these standards. Typical levels at the Wachusett Reservoir are 0.4 NTU. In 2012, turbidity was always below both the 5.0 and 1.0 NTU standards, with the highest level at 0.7 NTU. MWRA also tests reservoir water for pathogens such as fecal coliform, bacteria, and the parasites Cryptosporidium and Giardia. They can enter the water from animal or human waste. All test results were well within state and federal testing and treatment standards.

Test Results – After Treatment
EPA and state regulations require many water quality tests after treatment to check the water you are drinking. MWRA conducts hundreds of thousands of tests per year on over 120 contaminants (a complete list is available on www.mwra.com). For results on your local water supply, please see page 4. Details about 2012 test results are in the table below. The bottom line is that the water quality is excellent.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Units</th>
<th>(MCL) Highest Level Allowed</th>
<th>(We found) Detected Level - Average</th>
<th>Range of</th>
<th>(MCLG) Ideal Goal</th>
<th>Violation</th>
<th>How it gets in the water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>ppm</td>
<td>2</td>
<td>0.008</td>
<td>0.008-0.009</td>
<td>2</td>
<td>No</td>
<td>Common mineral in nature</td>
</tr>
<tr>
<td>Mono-chloramine</td>
<td>ppm</td>
<td>4-MRDL</td>
<td>1.8</td>
<td>0.01-3.4</td>
<td>4-MRDLG</td>
<td>No</td>
<td>Water disinfectant</td>
</tr>
<tr>
<td>Fluoride</td>
<td>ppm</td>
<td>4</td>
<td>1.01</td>
<td>0.75-1.20</td>
<td>4</td>
<td>No</td>
<td>Additive for dental health</td>
</tr>
<tr>
<td>Nitrate^</td>
<td>ppm</td>
<td>10</td>
<td>0.113</td>
<td>0.034-0.113</td>
<td>10</td>
<td>No</td>
<td>Atmospheric deposition</td>
</tr>
<tr>
<td>Nitrite^</td>
<td>ppm</td>
<td>1</td>
<td>0.006</td>
<td>ND-0.006</td>
<td>No</td>
<td>No</td>
<td>Byproduct of water disinfection</td>
</tr>
<tr>
<td>Perchlorate</td>
<td>ppb</td>
<td>2</td>
<td>0.071</td>
<td>0.071</td>
<td>ns</td>
<td>No</td>
<td>Byproduct of water disinfection</td>
</tr>
<tr>
<td>Total Trihalomethanes</td>
<td>ppb</td>
<td>80</td>
<td>8.3</td>
<td>4.9-11.1</td>
<td>ns</td>
<td>No</td>
<td>Byproduct of water disinfection</td>
</tr>
<tr>
<td>Haloacetic Acids-5</td>
<td>ppb</td>
<td>60</td>
<td>10.2</td>
<td>0-14.7</td>
<td>ns</td>
<td>No</td>
<td>Byproduct of water disinfection</td>
</tr>
<tr>
<td>Total Coliform</td>
<td>%</td>
<td>5%</td>
<td>0.5% (Aug)</td>
<td>ND-0.5%</td>
<td>0</td>
<td>No</td>
<td>Naturally present in environment</td>
</tr>
</tbody>
</table>

KEY: MCL=Maximum Contaminant Level. The highest level of a contaminant allowed in water. MCLs are set as close to the MCLGs as feasible using the best available technology. MCLG=Maximum Contaminant Level Goal. The level of contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. MRDL=Maximum Residual Disinfectant Level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. MRDLG=Maximum Residual Disinfectant Level Goal. The level of a drinking water disinfectant below which there is no known or expected health risk. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination. ppm=parts per million ppb=parts per billion ns=no standard ^As required by DEP, the maximum result is reported for nitrate and nitrite, not the average.
Community Pipes

Tests in Community Pipes
MWRA and local water departments test 300 to 500 water samples each week for total coliform bacteria. Total coliform bacteria can come from the intestines of warm-blooded animals, or can be found in soil, plants, or other places. Most of the time, they are not harmful. However, their presence could signal that harmful bacteria from fecal waste may be there as well. The EPA requires that no more than 5% of the samples in a month may be positive. If a water sample does test positive, we run more specific tests for E.coli, which is a bacteria found in human and animal fecal waste and may cause illness. If your community found any total coliform or E.coli in its local pipes, the results will be listed within the community letter on page 4.

Research for New Regulations
MWRA has been working with EPA and other researchers to define new national drinking water standards by testing for unregulated substances. To better understand the drinking water, MWRA has also voluntarily been testing for Cryptosporidium and Giardia prior to treatment.

Test	Measurement Units	Average
Cryptosporidium | oocysts per 100L | 0.19
Giardia | cysts per 100L | 0.3
Hexavalent Chromium | parts per billion | 0.03^a
NDMA | parts per trillion | 0.54^a

Key: *The result is from 2009. The DEP guidance value is 10 ppt. ^The result is from 2011.

Drinking Water and People With Weakened Immune Systems
Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the EPA’s Safe Drinking Water Hotline (1-800-426-4791).

Contaminants in Bottled Water and Tap Water
Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA’s Safe Drinking Water Hotline (1-800-426-4791) or MWRA. In order to ensure that tap water is safe to drink, the Massachusetts DEP and EPA prescribe regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) and the Massachusetts Department of Public Health regulations establish limits for contaminants in bottled water which must provide the same protection for public health.
This is an annual report on the quality of water delivered by the City of Marlborough to its residents and businesses. It complies with the Federal Safe Drinking Water Act (SDWA) requirement for “Consumer Confidence Reports” and contains information on the source of our water, its makeup and health risks associated with any contaminants. Safe water is vital to our community. Please read this report carefully and if you have any questions, call the numbers listed below.

The City of Marlborough’s water supply comes from three sources: Massachusetts Water Resources Authority (MWRA), Lake Williams and Millham Reservoir. During calendar year 2012, the City of Marlborough Department of Public Works supplied 1.63 billion gallons of water for use by our customers.

Pursuant to the SDWA, the City of Marlborough is required to monitor its drinking water on a regular basis for specific man-made and naturally occurring contaminants. Results of regular monitoring are an indicator of whether or not our drinking water meets applicable health standards. Testing results for 2012 show the city in compliance with lead and copper limits. The city plans to continue its incentive program to encourage participation by residents in our sampling program, its program for removing lead service pipes as part of our street reconstruction projects, and treating its drinking water to keep the lead and copper limits below the maximum contaminant levels.

System Wide Leak Detection Survey Completed
The City of Marlborough completed a System Wide Leak Detection Survey that began in 2010 and was completed in early calendar year 2012. All leaks that were found were repaired in conjunction with the survey process.

Perchlorate 3rd Quarter Sampling Non-Compliance
The City of Marlborough was in Non-Compliance with the Department of Environmental Protection for failure to sample for Perchlorate in the public drinking water during the 3rd quarter of 2012 (July-September). The sampling was taken however on December 5, 2012 and showed no detection of Perchlorate in the drinking water.

Volatile Organic Contaminant Sampling Non-Compliance
The City of Marlborough was in Non-Compliance with the Department of Environmental Protection for failure to sample for VOC's in the drinking water during the 2nd quarter of 2012 (April-June). The sampling was eventually taken on October 10, 2012, and results showed no detection of VOC’s in the drinking water.

Water Quality Table
The Water Quality Table below provides information on the results of the city’s testing program and is based upon samples taken during 2012. Terms used in the table are defined below or within the table itself.

<table>
<thead>
<tr>
<th></th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest Detected</th>
<th>Range</th>
<th>Major Sources</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium (ppm)</td>
<td>2</td>
<td>2</td>
<td>0.020</td>
<td>0.020</td>
<td>Erosion of natural deposits</td>
<td>No</td>
</tr>
<tr>
<td>Sodium (ppm)</td>
<td>none</td>
<td></td>
<td>1.20</td>
<td>1.0</td>
<td>Road salt, erosion of natural deposits</td>
<td>No</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>4</td>
<td>4</td>
<td>1.0</td>
<td>1.0</td>
<td>Water additive that promotes strong teeth</td>
<td>No</td>
</tr>
<tr>
<td>Chlorine (ppm)</td>
<td>4</td>
<td>4</td>
<td>1.86</td>
<td>0.03-4.5</td>
<td>Water disinfactant</td>
<td>No</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>1</td>
<td>TT</td>
<td>0.95</td>
<td>0.95</td>
<td>Temporary insolubility from lime addition & soil runoff</td>
<td>No</td>
</tr>
<tr>
<td>TTHMs Total Trihalomethanes (ppb)</td>
<td>avg=80</td>
<td>ns</td>
<td>avg=33.4</td>
<td>11.8 - 86.5</td>
<td>By-product of drinking water chlorination</td>
<td>No</td>
</tr>
<tr>
<td>HAAS (ppb)</td>
<td>avg=60</td>
<td>ns</td>
<td>avg=15.6</td>
<td>7.4 - 44.1</td>
<td>By-product of drinking water chlorination</td>
<td>No</td>
</tr>
<tr>
<td>Nitrate (ppm)</td>
<td>10</td>
<td>10</td>
<td>0.2</td>
<td>0.2</td>
<td>Fertilizer and soil runoff</td>
<td>No</td>
</tr>
</tbody>
</table>

Lead and Copper: 4th Quarter 2011

<table>
<thead>
<tr>
<th></th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest Detected</th>
<th>Range</th>
<th>Major Sources</th>
<th>Violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (ppb)</td>
<td>15</td>
<td>0</td>
<td>13</td>
<td>0 - 21</td>
<td>Homes exceeding AL of homes tested</td>
<td>No</td>
</tr>
<tr>
<td>Copper (ppb)</td>
<td>1.3</td>
<td>0</td>
<td>0.075</td>
<td>0 - 0.52</td>
<td>3 of 60</td>
<td>No</td>
</tr>
</tbody>
</table>

Although many tests were run on a number of contaminants, only those substances listed above were detected. Please share this information with other people who drink our water, especially those that may not have received this notice directly, for example, residents who live in apartments, nursing homes and other businesses. You can do this by posting this notice in a public place or distributing copies by hand or mail.

The state recommended per capita water use is 85 gallons per person per day. In order to achieve this value, we encourage all residents to use water more efficiently. Please visit the Marlborough Department of Public Works website for tips on water conservation at www.marlborough-ma.gov.

There is also a website for the City of Marlborough Source Water and Assessment Program (SWAP). This is a program established under the Safe Drinking Water Act. This program requires the City of Marlborough to inventory land uses within the recharge areas of all public water supply sources. The program also assesses the susceptibility of drinking water sources to contamination from these land uses and publicizes the results to provide support for improved protection. The Marlborough SWAP Report can be found on the website www.mass.gov/dep/water/drinking/2170000.

For more information including on meetings, please contact David R. Lavallee, Marlborough Water/Sewer Division General Foreman at 508-624-6910 ext. 7401 or email at dlavallee@marlborough-ma.gov.

| Key to Tables | Definitions of MCL, MCLG, AL, and units are found earlier in the report. | TT=Treatment Technique | 90th%*=Out of every 10 homes sampled, 9 were at or below this level. Lead and Copper were both below the Action Level. Lead and Copper was tested in the 2nd Quarter, 2011. | Unregulated Contaminants: Perchlorate was tested and was not detected. The water was tested for Giardia and Cryptosporidium and none were found. |
Facts About Lead

WHAT CAN I DO TO REDUCE EXPOSURE TO LEAD IN DRINKING WATER?
1. Run the tap until after the water feels cold. To save water, fill a pitcher with fresh water and place in the refrigerator for future use.
2. Never use hot water from the faucet for drinking or cooking, especially when making baby formula or other food for infants.
3. Ask your local water department if there are lead service lines leading to your home.
4. Check your plumbing fixtures to see if they are lead-free. Read the labels closely.
5. Test your tap water. Call the MWRA Drinking Water Hotline (617-242-5323) or visit our website for more tips and a list of DEP certified labs that can test your water.

WHAT YOU NEED TO KNOW ABOUT LEAD IN TAP WATER
MWRA water is lead-free when it leaves the reservoirs. MWRA and local pipes that carry the water to your community are made mostly of iron and steel and do not add lead to the water. However, lead can get into tap water through pipes in your home, your lead service line, lead solder used in plumbing, and some brass fixtures. Corrosion or wearing away of lead-based materials can add lead to tap water, especially if water sits for a long time in the pipes before it is used.

In 1996, MWRA began adding sodium carbonate and carbon dioxide to adjust the water’s pH and buffering capacity. This change has made the water less corrosive, thereby reducing the leaching of lead into drinking water. Lead levels found in samples tests of tap water have dropped by almost 90 percent since this treatment change.

MWRA MEETS LEAD STANDARD IN 2012
Under EPA rules, each year MWRA and your local water department must test tap water in a sample of homes that are likely to have high lead levels. These are usually homes with lead service lines or lead solder. The EPA rule requires that 9 out of 10, or 90%, of the sampled homes must have lead levels below the Action Level of 15 parts per billion (ppb).

All 17 sampling rounds over the past nine years have been below the EPA standard. Results for the 450 samples taken in September 2012 are shown in the table. 9 out of 10 houses were below 7.7 ppb, which is below the Action Level of 15 ppb. For lead and copper results for your local water supply, see page 4.

SEPTEMBER 2012 LEAD AND COPPER RESULTS

<table>
<thead>
<tr>
<th></th>
<th>Range</th>
<th>90% Value</th>
<th>(Target) Action Level</th>
<th>(Ideal Goal) MCLG</th>
<th>% Homes Above AL</th>
<th># Homes Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (ppb)</td>
<td>0.08-55.9</td>
<td>7.7</td>
<td>15</td>
<td>0</td>
<td>13/450</td>
<td></td>
</tr>
<tr>
<td>Copper (ppm)</td>
<td>0.007-0.6</td>
<td>0.1</td>
<td>1.3</td>
<td>0</td>
<td>0/450</td>
<td></td>
</tr>
</tbody>
</table>

KEY: Al = Action Level - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. Definition of MCLG available on page 2.

90TH PERCENTILE LEAD LEVELS FOR MWRA COMMUNITIES 1992–2012 (PPB)

![Graph showing lead levels from 1992 to 2012]

Important Information From EPA About Lead
If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. MWRA is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. If your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 1-800-426-4791 or www.epa.gov/safewater/lead.
WASTING WATER CAN ADD UP QUICKLY.
On average, each person in the MWRA region uses about 60 gallons of water each day. More efficient water use can reduce the impact on the water supply and on your wallet. For ways to make your home and your habits more water efficient, contact the MWRA at 617-242-SAVE or visit www.mwra.com for tips on saving water indoors and in your backyard.

FOLLOW OUTDOOR WATER SAVING GROUND RULES

- Water your lawn (and other landscaping) in early morning or evening to avoid evaporation.
- Be sure sprinklers water only your lawn, not the pavement.
- Never water on a windy day.
- Never use the hose to clean debris from your driveway or sidewalk. Use a broom.
- Apply mulch around plants to reduce evaporation, promote plant growth, and control weeds.

How to Find Leaks

Dripping, trickling, or leaking faucets, showerheads and toilets can waste up to several hundred gallons of water a week, depending on the size of the leaks. Worn-out washers are the main causes of leaks in faucets and showerheads.

That trickling sound you hear in the bathroom could be a leaky toilet, but sometimes toilets leak silently. TRY THIS: Crush a dye tablet and carefully empty the contents into the center of the toilet and and allow it to dissolve or use a few drops of food coloring. Wait about 10 minutes. Inspect the toilet bowl for signs of dye indicating a leak. If the dye has appeared in the bowl, your flapper or flush valve may need to be replaced. Parts are inexpensive and fairly easy to replace. If no dye has appeared after 10 minutes, you probably don’t have a leak.

Install a Low-Flow Showerhead and Faucet Aerator

Some showerheads may still use over 5 gallons per minute. A low-flow showerhead can use up to 50% less and can save you over 20 gallons per 10 minute shower. In one year, that’s over 7,000 gallons. Faucets can use 2 to 7 gallons per minute – a low-flow aerator can reduce the flow by about 25%.

THE INCH RULE FOR WATER SAVING OUTDOORS

Most lawns, shrubs, vegetables, and flowers need just one inch of water per week. If there has been an inch of rainfall during the week, you don’t have to water at all. Overwatering can actually weaken your lawn by encouraging shallow roots that are less tolerant of dry periods and more likely to be damaged by insects.

PROMOTE TAP WATER?

Let everyone know that you are drinking some of the best water in the world. Put a sticker on your reusable water bottle and fill it with tap water. Contact MWRA if you would like to receive a free sticker.

For more water saving ideas and devices, call 617-242-SAVE or go to www.mwra.com.